
Quantum Cryptanalysis on Lattices and Codes

Ph.D. defense

Johanna Loyer

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Public-key cryptography

Cryptographic problem

Secret key Public key
easy

hard

• •

Factorization problem

• •
Large primes p, q p · q

easy

hard

easy
for quantum computers

[Sho94] Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring.

1 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Public-key cryptography

Cryptographic problem

Secret key Public key
easy

hard

• •

Factorization problem

• •
Large primes p, q p · q

easy

hard
easy

for quantum computers

[Sho94] Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring.
1 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Leads for quantum-safe cryptography

Lattices

Multivariate polynomials

Codes

Isogenies

2 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

My contributions

Lattice-based cryptography:
• [CL21] Chailloux-Loyer. Lattice sieving via quantum random walks. (ASIACRYPT21)
• [CL23] Chailloux-Loyer. Classical and Quantum 3 and 4-Sieves to Solve SVP with

Low Memory. (PQCrypto23)

Code-based cryptography:
• [Loy23] Loyer. Quantum security analysis of Wave. (Submitted)
• [Wave] Banegas-Carrier-Chailloux-Couvreur-Debris-Gaborit-Karpman-Loyer-

-Niederhagen-Sendrier-Smith-Tillich.
(NIST submission to the post-quantum cryptography standardization)

3 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

1 Lattice sieving

2 Sieving via quantum walks

3 k-sieves with lower memory

4 Wave quantum security

4 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Outline

1 Lattice sieving
Shortest Vector Problem (SVP)
Sieving algorithms
Filtering

2 Sieving via quantum walks
New framework
Quantum walk
Complexity results

3 k-sieves with lower memory

4 Wave quantum security

5 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Lattice

Given a basis B = (b⃗1, ..., b⃗d), the lattice L generated by B is the set of all integer
linear combinations of its basis vectors: L(B) =

{
∑d

i=1 zi b⃗i , zi ∈ Z
}

.

Shortest Vector Problem (SVP)

Given a lattice L, find the shortest non-zero vector v⃗ ∈ L.

6 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Lattice-based cryptography
• • • • • •
• • • • •

• • • • • •
• • • • •

• • • • • •
• • • • •

0⃗ b⃗1

b⃗2 easy

hard ?

• • • • • •
• • • • •

• • • • • •
• • • • •

• • • • • •
• • • • •

0⃗

b⃗′
1

b⃗′
2

SVP
Lattice basis

reduction
BKZ

Lattice
problems
LWE, SIS,

NTRU

Break Kyber,
Dilithium,
Falcon...

7 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Lattice-based cryptography
• • • • • •
• • • • •

• • • • • •
• • • • •

• • • • • •
• • • • •

0⃗ b⃗1

b⃗2 easy

hard ?

• • • • • •
• • • • •

• • • • • •
• • • • •

• • • • • •
• • • • •

0⃗

b⃗′
1

b⃗′
2

SVP
Lattice basis

reduction
BKZ

Lattice
problems
LWE, SIS,

NTRU

Break Kyber,
Dilithium,
Falcon...

7 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Outline

1 Lattice sieving
Shortest Vector Problem (SVP)
Sieving algorithms
Filtering

2 Sieving via quantum walks
New framework
Quantum walk
Complexity results

3 k-sieves with lower memory

4 Wave quantum security

8 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Sieving step

Input: list L of N lattice vectors of norm at most R ; γ < 1.
Output: list Lout of N lattice vectors of norm at most γR < R.

Initialization:
Generate N lattice vectors
of norm ≲ R (large)
by Klein’s algorithm 0⃗

•

•
•

•

•

•
•

×R

x

x

9 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Sieving step

Input: list L of N lattice vectors of norm at most R ; γ < 1.
Output: list Lout of N lattice vectors of norm at most γR < R.

After 1 iteration:
vectors of norm at most
γR 0⃗

•

••

•

•
•

•

×R
γR

x

x

9 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Sieving step

Input: list L of N lattice vectors of norm at most R ; γ < 1.
Output: list Lout of N lattice vectors of norm at most γR < R.

After 2 iterations:
vectors of norm at most
γ2R 0⃗

•
••

•

•
•

•
×R

γ2R

x

x

9 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Sieving step

Input: list L of N lattice vectors of norm at most R ; γ < 1.
Output: list Lout of N lattice vectors of norm at most γR < R.

After poly(d) iterations:
norm at most γpoly(d)R.

Short vector found! 0⃗
×•

x

x

9 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Nguyen-Vidick sieving step [NV08]

for x⃗1, x⃗2 ∈ L :
if ∥⃗x1 − x⃗2∥ ⩽ γR then add x⃗1 − x⃗2 to Lout

x⃗1

x⃗2

x⃗1 − x⃗2

0⃗

•

•
•

•
R

γR

Minimal list size such that |L| = |Lout | = N:

N2 · Pr⃗x1 ,⃗x2

[
∥⃗x1 − x⃗2∥ ≤ γR

]︸ ︷︷ ︸
Number of reducing pairs

= N︸︷︷︸
Output points

⇒ N = 20.208d+o(d)

Complexity:
• Time: poly(d) · N2 = 20.415d+o(d)

• Memory: poly(d) · N = 20.208d+o(d)

10 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Nguyen-Vidick sieving step [NV08]

for x⃗1, x⃗2 ∈ L :
if ∥⃗x1 − x⃗2∥ ⩽ γR then add x⃗1 − x⃗2 to Lout

x⃗1

x⃗2

x⃗1 − x⃗2

0⃗

•

•
•

•
R

γR

Minimal list size such that |L| = |Lout | = N:

N2 · Pr⃗x1 ,⃗x2

[
∥⃗x1 − x⃗2∥ ≤ γR

]︸ ︷︷ ︸
Number of reducing pairs

= N︸︷︷︸
Output points

⇒ N = 20.208d+o(d)

Complexity:
• Time: poly(d) · N2 = 20.415d+o(d)

• Memory: poly(d) · N = 20.208d+o(d)

10 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Nguyen-Vidick sieving step [NV08]

for x⃗1, x⃗2 ∈ L :
if ∥⃗x1 − x⃗2∥ ⩽ γR then add x⃗1 − x⃗2 to Lout

x⃗1

x⃗2

x⃗1 − x⃗2

0⃗

•

•
•

•
R

γR

Minimal list size such that |L| = |Lout | = N:

N2 · Pr⃗x1 ,⃗x2

[
∥⃗x1 − x⃗2∥ ≤ γR

]︸ ︷︷ ︸
Number of reducing pairs

= N︸︷︷︸
Output points

⇒ N = 20.208d+o(d)

Complexity:
• Time: poly(d) · N2 = 20.415d+o(d)

• Memory: poly(d) · N = 20.208d+o(d)

10 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Outline

1 Lattice sieving
Shortest Vector Problem (SVP)
Sieving algorithms
Filtering

2 Sieving via quantum walks
New framework
Quantum walk
Complexity results

3 k-sieves with lower memory

4 Wave quantum security

11 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Locality Sensitive Filtering (LSF)
Main idea: Only check the near vectors ▶ Check vectors near to a same point.

A filter of center F ∈ Rd and angle α ∈ [0, π
2] maps a vector x⃗ to a boolean value:

• 1 if Angle(⃗x, F) ⩽ α,
• 0 else.

Fx⃗1•

x⃗2•

0⃗
×

α

•⋄

Associated with a set
“bucket"

12 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Locality Sensitive Filtering (LSF)
Main idea: Only check the near vectors ▶ Check vectors near to a same point.

A filter of center F ∈ Rd and angle α ∈ [0, π
2] maps a vector x⃗ to a boolean value:

• 1 if Angle(⃗x, F) ⩽ α,
• 0 else.

Fx⃗1•

x⃗2•

0⃗
×

α

•⋄
Associated with a set

“bucket"

12 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

NV-sieve with filtering

. .×

•
•

•

•

•

•
•

•

•

• Generate the filters•⋄

•
•

•

•

•
•

•

⋄
⋄

⋄

⋄

⋄
⋄

⋄

• For each vector: add it to its nearest buckets.

x⃗

•• ⋄
⋄

• For each vector: search for a reducing one within its buckets.

13 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

NV-sieve with filtering

. .×

•
•

•

•

•

•
•

•

•

• Generate the filters•⋄

•
•

•

•

•
•

•

⋄
⋄

⋄

⋄

⋄
⋄

⋄

• For each vector: add it to its nearest buckets.

x⃗

•• ⋄
⋄

• For each vector: search for a reducing one within its buckets.

13 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

NV-sieve with filtering

. .×

•
•

•

•

•

•
•

•

•

• Generate the filters•⋄

•
•

•

•

•
•

•

⋄
⋄

⋄

⋄

⋄
⋄

⋄

• For each vector: add it to its nearest buckets.

x⃗

•• ⋄
⋄

• For each vector: search for a reducing one within its buckets.

13 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

NV-sieve with filtering

. .×

•
•

•

•

•

•
•

•

•

• Generate the filters•⋄

•
•

•

•

•
•

•

⋄
⋄

⋄

⋄

⋄
⋄

⋄

• For each vector: add it to its nearest buckets.

x⃗

•• ⋄
⋄

• For each vector: search for a reducing one within its buckets.

13 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

NV-sieve with filtering

. .×

•
•

•

•

•

•
•

•

•

• Generate the filters•⋄

•
•

•

•

•
•

•

⋄
⋄

⋄

⋄

⋄
⋄

⋄

• For each vector: add it to its nearest buckets.

x⃗

•• ⋄
⋄

• For each vector: search for a reducing one within its buckets.

13 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

NV-sieve with filtering

. .×

•
•

•

•

•

•
•

•

•

• Generate the filters•⋄

•
•

•

•

•
•

•

⋄
⋄

⋄

⋄

⋄
⋄

⋄

• For each vector: add it to its nearest buckets.

x⃗

•• ⋄
⋄

• For each vector: search for a reducing one within its buckets.
13 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Random Product Code (RPC)

C = Q · (C1 × · · · × Cm) ⊂ Rd

• C1, ..., Cm: sets of B vectors in Rd/m unif. & indep. random of norm
√

1
m

• Q uniformly random rotation over Rd

▶ Points uniformly distributed over the sphere
▶ Efficient list decoding algorithm (subexponential or polynomial time)

1 codeword = 1 filter
center

• ••
×

•
•

•

•
• • •

•

•

•
••⋄

⋄

⋄

⋄
⋄ ⋄ ⋄

⋄

⋄

⋄
⋄⋄x⃗•

α

14 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

NV-sieve with filtering

• Generate the filters
• For each vector: add it to its nearest buckets
• For each vector: search for a reducing one within its buckets

▶ Classically or by Grover’s search

Memory complexity: 20.208d+o(d)

Time complexity:
Classical NV-sieve: 20.415d+o(d) Quantum NV-sieve: 20.311d+o(d)

With filtering1: 20.292d+o(d) With filtering2: 20.265d+o(d)

1[BDGL16] Becker-Ducas-Gama-Laarhoven. New directions in nearest neighbor searching with
applications to lattice sieving.

2[Laa16] Laarhoven. Search problems in cryptography: from fingerprinting to lattice sieving.
(PhD)

15 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Outline

1 Lattice sieving
Shortest Vector Problem (SVP)
Sieving algorithms
Filtering

2 Sieving via quantum walks
New framework
Quantum walk
Complexity results

3 k-sieves with lower memory

4 Wave quantum security

16 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Our framework algorithm

Sieving step using quantum walks

Input: list L of N lattice vectors of norm at most R ; γ < 1
Output: list L′ of N lattice vectors of norm at most γR < R.

Main idea: Replace Grover’s search with a quantum walk.

17 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Step 1 - Partitioning the sphere

×
α •

•

•

•
•

⋄

⋄

⋄

⋄
⋄

•

••
•

•

•

• •
•

•

18 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Step 2 - Pairs finding

For each :
Find all the reducing pairs within by quantum walks.

19 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum Walk
Input: a graph G = (V , E), function f : V → {0, 1}.
Output: a “marked" vertex v ∈ V such that f (v) = 1.

Function: For vertex v ⊆ , f (v) =
{

1 if v contains a reducing pair,
0 otherwise.

Johnson graph J(Size , Sizev):

Johnson graph J(5, 2)

20 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertex

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertex

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertex

ü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Quantum walk subroutine
Goal: Find 1 reducing pair in

.

.

ü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertexü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

Ԧ𝑥𝑛𝑒𝑤

ü Zoom on the current vertex

21 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Classic VS Quantum walks

Classic random walk: Randomly choose 1 neighbor vertex.

Quantum walk: Quantum superposition of all the neighbor vertices.

Time complexity3: S + U√
ϵ·δ

Setup S : construct the 1st vertex, fill
Update U : update with x⃗new , check

, build the superposition of the
neighbors

ϵ ≤ 1 fraction of marked vertices
δ ≤ 1 spectral gap of the graph

3[MNRS07] Magniez-Nayak-Roland-Santha. Search via quantum walk.
22 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Classic VS Quantum walks

Classic random walk: Randomly choose 1 neighbor vertex.

Quantum walk: Quantum superposition of all the neighbor vertices.

Time complexity3: S + U√
ϵ·δ

Setup S : construct the 1st vertex, fill
Update U : update with x⃗new , check

, build the superposition of the
neighbors

ϵ ≤ 1 fraction of marked vertices
δ ≤ 1 spectral gap of the graph

3[MNRS07] Magniez-Nayak-Roland-Santha. Search via quantum walk.
22 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Step 1 - Partitioning the sphere

For each x⃗ ∈ L:
Add x⃗ to its nearest filter’s bucket

Step 2 - Pairs finding

For each :
Repeat until all the reducing pairs are found within :

Run a quantum walk (with filters) to find a new reducing pair

Repeat
Repeat steps 1 and 2 until all N reduced points are found.

× •

•
•

• •

⋄

⋄
⋄

⋄ ⋄

•
•

23 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Step 1 - Partitioning the sphere

For each x⃗ ∈ L:
Add x⃗ to its nearest filter’s bucket

Step 2 - Pairs finding

For each :
Repeat until all the reducing pairs are found within :

Run a quantum walk (with filters) to find a new reducing pair

Repeat
Repeat steps 1 and 2 until all N reduced points are found.

× •

•
•

• •

⋄

⋄
⋄

⋄ ⋄

•
•

23 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Complexity

Time of a sieving step: N ·
(
S + U√

ϵ δ

)
.

.

Parameters:

• Size of a vertex
• Size of a bucket

• Size of a bucket

.

.

20.08d

20.05d

poly(d)

numerical
optimisation.

Our algorithm (heuristically) solves SVP
▶ in time 20.257d+o(d) (previous: 20.265d+o(d))
▶ with classical memory of size 20.208d+o(d),
▶ QRACM of size 20.08d+o(d),
▶ and quantum memory (QRAQM) of size 20.05d+o(d).

24 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Complexity

Time of a sieving step: N ·
(
S + U√

ϵ δ

)
.

.

Parameters:

• Size of a vertex
• Size of a bucket

• Size of a bucket

.

.

20.08d

20.05d

poly(d)

numerical
optimisation.

Our algorithm (heuristically) solves SVP
▶ in time 20.257d+o(d) (previous: 20.265d+o(d))
▶ with classical memory of size 20.208d+o(d),
▶ QRACM of size 20.08d+o(d),
▶ and quantum memory (QRAQM) of size 20.05d+o(d).

24 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Complexity

Time of a sieving step: N ·
(
S + U√

ϵ δ

)
.

.

Parameters:

• Size of a vertex
• Size of a bucket

• Size of a bucket

.

.

20.08d

20.05d

poly(d)

numerical
optimisation.

Our algorithm (heuristically) solves SVP
▶ in time 20.257d+o(d) (previous: 20.265d+o(d))
▶ with classical memory of size 20.208d+o(d),
▶ QRACM of size 20.08d+o(d),
▶ and quantum memory (QRAQM) of size 20.05d+o(d). 24 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Trade-offs

•

• [Laa16]

Quantum memory/time trade-off.
(Exponents 2xd)

25 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Trade-offs

•

• [BDGL16]

•
[Laa16]

QRACM/time trade-off.
(Exponents 2xd)

26 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Trade-offs

Time 0.2925 0.283 0.273 0.2653 0.262 0.260 0.2570
QRACM 0 0.02 0.04 0.0578 0.065 0.070 0.0767
QRAQM 0 0 0 0 0.019 0.032 0.0495

Comment [BDGL16] alg. [Laa16] alg. opt.param4

Time and memory exponents for our algorithm.

4[CL21] Chailloux-Loyer. Lattice sieving via quantum random walks.
27 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Takeaway

Conclusion
• Use quantum walks for sieving
• Generalization of the framework from [BDGL16] using two filtering layers
• New best quantum attack on lattices: 20.2570d+o(d) (previous: 20.265d+o(d))
• Go below the conditional lower bound5

5[KL21] Kirshanova-Laarhoven. Lower bounds on lattice sieving and information set decoding.
28 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Outline

1 Lattice sieving
Shortest Vector Problem (SVP)
Sieving algorithms
Filtering

2 Sieving via quantum walks
New framework
Quantum walk
Complexity results

3 k-sieves with lower memory

4 Wave quantum security

29 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

2-sieve [NV08]

for (⃗x1, x⃗2) ∈ L2 :
if ∥⃗x1 − x⃗2∥ ⩽ γR :

add x⃗1 − x⃗2 to Lout

3-sieve

for (⃗x1, x⃗2, x⃗3) ∈ L3 :
if ∥⃗x1 + x⃗2 + x⃗3∥ ⩽ γR :

add x⃗1 + x⃗2 + x⃗3 to Lout

k -sieve

for (⃗x1, ..., x⃗k) ∈ Lk :
if ∥⃗x1 + ... + x⃗k∥ ⩽ γR :

add x⃗1 + ... + x⃗k to Lout

30 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

2-sieve [NV08]

for (⃗x1, x⃗2) ∈ L2 :
if ∥⃗x1 − x⃗2∥ ⩽ γR :

add x⃗1 − x⃗2 to Lout

3-sieve

for (⃗x1, x⃗2, x⃗3) ∈ L3 :
if ∥⃗x1 + x⃗2 + x⃗3∥ ⩽ γR :

add x⃗1 + x⃗2 + x⃗3 to Lout

k -sieve

for (⃗x1, ..., x⃗k) ∈ Lk :
if ∥⃗x1 + ... + x⃗k∥ ⩽ γR :

add x⃗1 + ... + x⃗k to Lout

30 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

2-sieve [NV08]

for (⃗x1, x⃗2) ∈ L2 :
if ∥⃗x1 − x⃗2∥ ⩽ γR :

add x⃗1 − x⃗2 to Lout

3-sieve

for (⃗x1, x⃗2, x⃗3) ∈ L3 :
if ∥⃗x1 + x⃗2 + x⃗3∥ ⩽ γR :

add x⃗1 + x⃗2 + x⃗3 to Lout

k -sieve

for (⃗x1, ..., x⃗k) ∈ Lk :
if ∥⃗x1 + ... + x⃗k∥ ⩽ γR :

add x⃗1 + ... + x⃗k to Lout

30 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Minimal memory N

Naive time Nk

31 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Minimal memory N Naive time Nk

31 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Filtering strategy for the 2-sieve

×

F•⋄ •
x⃗1

•
x⃗2

.

.

F1 + F2 + F3 = 0⃗ 32 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

New filtering tailored for the k -sieve

×

F•⋄ •
x⃗1

•x⃗2

•
x⃗3

.

.

F1 + F2 + F3 = 0⃗ 32 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

New filtering tailored for the k -sieve

×

F1•

F2
• F3•

⋄

⋄ ⋄

•
x⃗1

•x⃗2

•
x⃗3

.

.

F1 + F2 + F3 = 0⃗ 32 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Step 1 - Partitioning the sphere

For each x⃗ ∈ L:
Add x⃗ to its nearest filter’s bucket

Step 2 - Triplets finding

For each tuple-filter :
Find all reducing (⃗x1, x⃗2, x⃗3) in × ×

Repeat
Repeat steps 1 and 2 until all N reduced points are found.

33 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Trade-offs

Classical k -sieves

Quantum k -sieves

34 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Trade-offs

Classical k -sieves Quantum k -sieves

34 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Takeaway

Conclusion
• New filtering technique: k -RPC
• New trade-offs, improved in some regimes
• Also go below the conditional lower bound6

Straightforward improvements: add pairwise filtering , quantum walks...

6[KL21] Kirshanova-Laarhoven. Lower bounds on lattice sieving and information set decoding.
35 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Outline

1 Lattice sieving
Shortest Vector Problem (SVP)
Sieving algorithms
Filtering

2 Sieving via quantum walks
New framework
Quantum walk
Complexity results

3 k-sieves with lower memory

4 Wave quantum security

36 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Syndrome Decoding problem

Public: matrix H and vector s with elements in {0, 1}, weight w ∈ J0, nK
Secret: e ∈ {0, 1}n such that:

H

n

n − k • e
= s

︸︷︷︸
weight w

▶ digital signature:
• H structured matrix (U, U + V)
• Ternary : {0, 1, 2} instead of {0, 1}
• Large weight w

37 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Syndrome Decoding problem

Public: matrix H and vector s with elements in {0, 1}, weight w ∈ J0, nK
Secret: e ∈ {0, 1}n such that:

H

n

n − k • e
= s

︸︷︷︸
weight w

▶ digital signature:
• H structured matrix (U, U + V)
• Ternary : {0, 1, 2} instead of {0, 1}
• Large weight w

37 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Attacks on Wave
Key attack: Distinguish the secret key from the uniform random
▶ Find e = (u, u) solution to the Syndrome Decoding problem.

Forgery attack: Produce a fake signed document passing the authenticity test
▶ Find couple s and e = (u, u) solution to the Syndrome Decoding problem.

ISD
[Prange62]

DOOM
[Sendrier11]

Wagner
[Wag02]

Smoothing
[BCDL19]

Quantum Wagner
[CDE21]

Classical security
analysis of Wave

[Sendrier23]

Quantum security
analysis of Wave

[this work]

38 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Attacks on Wave
Key attack: Distinguish the secret key from the uniform random
▶ Find e = (u, u) solution to the Syndrome Decoding problem.

Forgery attack: Produce a fake signed document passing the authenticity test
▶ Find couple s and e = (u, u) solution to the Syndrome Decoding problem.

ISD
[Prange62]

DOOM
[Sendrier11]

Wagner
[Wag02]

Smoothing
[BCDL19]

Quantum Wagner
[CDE21]

Classical security
analysis of Wave

[Sendrier23]

Quantum security
analysis of Wave

[this work]

38 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Attacks on Wave
Key attack: Distinguish the secret key from the uniform random
▶ Find e = (u, u) solution to the Syndrome Decoding problem.

Forgery attack: Produce a fake signed document passing the authenticity test
▶ Find couple s and e = (u, u) solution to the Syndrome Decoding problem.

ISD
[Prange62]

DOOM
[Sendrier11]

Wagner
[Wag02]

Smoothing
[BCDL19]

Quantum Wagner
[CDE21]

Classical security
analysis of Wave

[Sendrier23]

Quantum security
analysis of Wave

[this work]

38 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Wave security

λ bits of security: known attacks run in time ≥ 2λ.

Classical Quantum
NIST settings Key attack Forgery attack Key attack Forgery attack

(I) 138 129 80 78
(III) 206 194 120 117
(V) 274 258 160 156

39 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Takeaway

Conclusion
• First quantum key attack against Wave
• Improvement of the quantum forgery attack
• NIST submission

40 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Ongoing and future works

• Code sieving via quantum walks
Collision finding and two filtering layers for code sieving [DEEK23]

• Optimal quantum algorithm for multiple collisions
Extend [BCSS23] to all parameter ranges.

• 2k -sieve with combined filtering techniques
Trade-off from best memory to best time.

41 / 42

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower memory Wave quantum security Conclusion

Thank you for your attention!

42 / 42

	Introduction
	Lattice sieving
	Shortest Vector Problem (SVP)
	Sieving algorithms
	Filtering

	Sieving via quantum walks
	New framework
	Quantum walk
	Complexity results

	k-sieves with lower memory
	Wave quantum security
	Conclusion

