Quantum Cryptanalysis on Lattices and Codes

Ph.D. defense

Johanna Loyer

Public-key cryptography

Factorization problem

Large primes
$$p, q \xrightarrow{\text{easy}} p \cdot q$$

Public-key cryptography

Factorization problem

[Sho94] Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Leads for quantum-safe cryptography

Codes Lattices Multivariate polynomials Isogenies

My contributions

Lattice-based cryptography:

- [CL21] Chailloux-Loyer. Lattice sieving via quantum random walks. (ASIACRYPT21)
- [CL23] Chailloux-Loyer. Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory. (PQCrypto23)

Code-based cryptography:

- [Loy23] Loyer. Quantum security analysis of Wave. (Submitted)
- [Wave] Banegas-Carrier-Chailloux-Couvreur-Debris-Gaborit-Karpman-Loyer-Niederhagen-Sendrier-Smith-Tillich.
 (NIST submission to the post-quantum cryptography standardization)

Lattice sieving

0000

- Sieving via quantum walks
- k-sieves with lower memory
- Wave quantum security

Outline

- Lattice sieving
 - Shortest Vector Problem (SVP)
 - Sieving algorithms
 - Filtering
- Sieving via quantum walks
 - New framework
 - Quantum walk
 - Complexity results
- 3 k-sieves with lower memory
- Wave quantum security

Lattice

Given a basis $B=(\vec{b_1},...,\vec{b_d})$, the lattice \mathcal{L} generated by B is the set of all integer linear combinations of its basis vectors: $\mathcal{L}(B)=\left\{\sum_{i=1}^d z_i \vec{b_i},\ z_i \in \mathbb{Z}\right\}$.

Shortest Vector Problem (SVP)

Given a lattice \mathcal{L} , find the shortest non-zero vector $\vec{v} \in \mathcal{L}$.

Lattice-based cryptography

Lattice-based cryptography

Outline

- Lattice sieving
 - Shortest Vector Problem (SVP)
 - Sieving algorithms
 - Filtering
- Sieving via quantum walks
 - New framework
 - Quantum walk
 - Complexity results
- 3 k-sieves with lower memory
- Wave quantum security

Input: list *L* of *N* lattice vectors of norm at most *R* ; γ < 1.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

Initialization:

Generate N lattice vectors of norm $\lesssim R$ (large) by Klein's algorithm

Input: list *L* of *N* lattice vectors of norm at most *R* ; γ < 1.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

After 1 iteration: vectors of norm at most γR

Input: list *L* of *N* lattice vectors of norm at most *R* ; γ < 1.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

After 2 iterations: vectors of norm at most $\gamma^2 R$

Input: list *L* of *N* lattice vectors of norm at most *R* ; γ < 1.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

After poly(d) iterations: norm at most $\gamma^{\text{poly}(d)}R$.

Short vector found!

Nguyen-Vidick sieving step [NV08]

Lattice sieving

for
$$\vec{x}_1, \vec{x}_2 \in L$$
:
if $||\vec{x}_1 - \vec{x}_2|| \le \gamma R$ then add $\vec{x}_1 - \vec{x}_2$ to L_{out}

Nguyen-Vidick sieving step [NV08]

for
$$\vec{x}_1, \vec{x}_2 \in L$$
:
if $||\vec{x}_1 - \vec{x}_2|| \le \gamma R$ then add $\vec{x}_1 - \vec{x}_2$ to L_{out}

Minimal list size such that $|L| = |L_{out}| = N$:

$$\underbrace{N^2 \cdot Pr_{\vec{\mathbf{X}}_1, \vec{\mathbf{X}}_2} \big[\|\vec{\mathbf{X}}_1 - \vec{\mathbf{X}}_2\| \leq \gamma R \big]}_{\text{Number of reducing pairs}} = \underbrace{N}_{\text{Output points}}$$

$$\Rightarrow N = 2^{0.208d + o(d)}$$

Nguyen-Vidick sieving step [NV08]

for
$$\vec{x}_1, \vec{x}_2 \in L$$
:
if $||\vec{x}_1 - \vec{x}_2|| \leq \gamma R$ then add $\vec{x}_1 - \vec{x}_2$ to L_{out}

Minimal list size such that $|L| = |L_{out}| = N$:

$$\underbrace{ \frac{\textit{N}^2 \cdot \textit{Pr}_{\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2} \big[\|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\| \leq \gamma R \big]}_{\text{Number of reducing pairs}} = \underbrace{\textit{N}}_{\text{Output points}}$$

$$\Rightarrow N = 2^{0.208d + o(d)}$$

Complexity:

- Time: $poly(d) \cdot N^2 = 2^{0.415d + o(d)}$
- Memory: $poly(d) \cdot N = 2^{0.208d + o(d)}$

Outline

- Lattice sieving
 - Shortest Vector Problem (SVP)
 - Sieving algorithms
 - Filtering
- Sieving via quantum walks
 - New framework
 - Quantum walk
 - Complexity results
- 3 k-sieves with lower memory
- Wave quantum security

Locality Sensitive Filtering (LSF)

Main idea: Only check the near vectors ▶ Check vectors near to a same point.

A filter of center $\mathbf{F} \in \mathbb{R}^d$ and angle $\alpha \in [0, \frac{\pi}{2}]$ maps a vector $\vec{\mathbf{x}}$ to a boolean value:

- 1 if Angle($\vec{\mathbf{x}}$, \mathbf{F}) $\leqslant \alpha$,
- 0 else.

Locality Sensitive Filtering (LSF)

Main idea: Only check the near vectors ▶ Check vectors near to a same point.

A **filter** of center $\mathbf{F} \in \mathbb{R}^d$ and angle $\alpha \in [0, \frac{\pi}{2}]$ maps a vector $\vec{\mathbf{x}}$ to a boolean value:

- 1 if Angle($\vec{\mathbf{x}}$, \mathbf{F}) $\leqslant \alpha$,
- 0 else.

Associated with a set "bucket"

Generate the filters

Generate the filters

- Generate the filters
- For each vector: add it to its nearest buckets.

- Generate the filters
- For each vector: add it to its nearest buckets.

- Generate the filters
- For each vector: add it to its nearest buckets.
- For each vector: search for a reducing one within its buckets.

$$C = Q \cdot (C_1 \times \cdots \times C_m) \subset \mathbb{R}^d$$

- $C_1,...,C_m$: sets of B vectors in $\mathbb{R}^{d/m}$ unif. & indep. random of norm $\sqrt{\frac{1}{m}}$
- Q uniformly random rotation over \mathbb{R}^d
- Points uniformly distributed over the sphere
- ► Efficient list decoding algorithm (subexponential or polynomial time)

1 codeword ◆ = 1 filter center

- Generate the filters
- For each vector: add it to its nearest buckets
- For each vector: search for a reducing one within its buckets

Classically or by Grover's search

Memory complexity: $2^{0.208d+o(d)}$

Time complexity:

Classical NV-sieve: $2^{0.415d+o(d)}$

Quantum NV-sieve: $2^{0.311d+o(d)}$

With filtering¹: $2^{0.292d+o(d)}$

With filtering²: $2^{0.265d+o(d)}$

¹[BDGL16] Becker-Ducas-Gama-Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving.

²[Laa16] Laarhoven. Search problems in cryptography: from fingerprinting to lattice sieving. (PhD)

Outline

- Lattice sieving
 - Shortest Vector Problem (SVP)
 - Sieving algorithms
 - Filtering
- Sieving via quantum walks
 - New framework
 - Quantum walk
 - Complexity results
- 3 k-sieves with lower memory
- Wave quantum security

Our framework algorithm

Sieving step using quantum walks

Input: list *L* of *N* lattice vectors of norm at most *R* ; $\gamma < 1$ **Output**: list *L'* of *N* lattice vectors of norm at most $\gamma R < R$.

Main idea: Replace Grover's search with a quantum walk.

Step 2 - Pairs finding

For each 👕:

Find all the reducing pairs within by quantum walks.

Lattice sieving

Function: For vertex $v \subseteq \mathbb{F}$, $f(v) = \begin{cases} 1 & \text{if } v \text{ contains a reducing pair,} \\ 0 & \text{otherwise.} \end{cases}$

Johnson graph $J(Size_{\bullet}, Size_{\nu})$:

Johnson graph J(5,2)

Quantum walk subroutine

Goal: Find 1 reducing pair in

Q Zoom on the current vertex

Quantum walk subroutine

Goal: Find 1 reducing pair in

Q Zoom on the current vertex

Goal: Find 1 reducing pair in

Introduction Lattice sieving Sieving via quantum walks k-sieves with lower-memory Wave-quantum security Conclusion

Classic VS Quantum walks

Classic random walk: Randomly choose 1 neighbor vertex.

Quantum walk: Quantum superposition of all the neighbor vertices.

³[MNRS07] Magniez-Nayak-Roland-Santha. Search via quantum walk.

Classic VS Quantum walks

Classic random walk: Randomly choose 1 neighbor vertex.

Quantum walk: Quantum superposition of all the neighbor vertices.

Time complexity³:
$$S + \frac{\mathcal{U}}{\sqrt{\epsilon \cdot \delta}}$$

- Setup S: construct the 1st vertex, fill
- Update \mathcal{U} : update $\overset{\bullet}{\longrightarrow}$ with $\vec{\mathbf{x}}_{new}$, check $\overset{\bullet}{\odot}$, build the superposition of the neighbors

- $\epsilon \leq$ 1 fraction of marked vertices
- $\delta \leq$ 1 spectral gap of the graph

³[MNRS07] Magniez-Nayak-Roland-Santha. Search via quantum walk.

Step 1 - Partitioning the sphere

For each $\vec{x} \in L$:

Add \vec{x} to its nearest filter's bucket

For each ::

Repeat until all the reducing pairs are found within :: Run a quantum walk (with filters) to find a new reducing pair

23 / 42

Step 1 - Partitioning the sphere

For each $\vec{x} \in L$:

Add \vec{x} to its nearest filter's bucket

Step 2 - Pairs finding

For each 👕:

Repeat until all the reducing pairs are found within ::

Run a quantum walk (with filters) to find a new reducing pair

Repeat

Repeat steps 1 and 2 until all N reduced points are found.

Complexity

Time of a sieving step: $N \cdot \left(S + \frac{\mathcal{U}}{\sqrt{\epsilon \ \delta}}\right)$

Parameters:

- Size of a bucket
- Size of a vertex
- Size of a bucket

Complexity

Time of a sieving step:
$$N \cdot \left(S + \frac{\mathcal{U}}{\sqrt{\epsilon \ \delta}}\right)$$

Parameters:

- Size of a bucket
- Size of a vertex
- Size of a bucket

numerical optimisation

2^{0.08}*d* 2^{0.05}*d*

poly(d)

Complexity

Time of a sieving step:
$$N \cdot \left(S + \frac{\mathcal{U}}{\sqrt{\epsilon \ \delta}}\right)$$

Parameters:

Lattice sieving

- Size of a bucket
- Size of a vertex \$\cdot\$
- Size of a bucket

20.08d **2**0.05d

poly(d)

Our algorithm (heuristically) solves SVP

- in time $2^{0.257d+o(d)}$ (previous: $2^{0.265d+o(d)}$)
- with classical memory of size $2^{0.208d+o(d)}$
- ▶ QRACM of size $2^{0.08d+o(d)}$
- and quantum memory (QRAQM) of size 2^{0.05d+o(d)}

Quantum memory/time trade-off. (Exponents 2^{xd})

QRACM/time trade-off. (Exponents 2^{xd})

Time	0.2925	0.283	0.273	0.2653	0.262	0.260	0.2570
QRACM	0	0.02	0.04	0.0578	0.065	0.070	0.0767
QRAQM	0	0	0	0	0.019	0.032	0.0495
Comment	[BDGL16] alg.			[Laa16] alg.			opt.param

Time and memory exponents for our algorithm.

⁴[CL21] Chailloux-Loyer. Lattice sieving via quantum random walks.

Takeaway

Conclusion

- Use quantum walks for sieving
- Generalization of the framework from [BDGL16] using two filtering layers
- New best quantum attack on lattices: $2^{0.2570d+o(d)}$ (previous: $2^{0.265d+o(d)}$)
- Go below the conditional lower bound⁵

⁵[KL21] Kirshanova-Laarhoven. Lower bounds on lattice sieving and information set decoding.

Outline

- Lattice sieving
 - Shortest Vector Problem (SVP)
 - Sieving algorithms
 - Filtering
- Sieving via quantum walks
 - New framework
 - Quantum walk
 - Complexity results
- 3 k-sieves with lower memory
- Wave quantum security

2-sieve [NV08]

for
$$(\vec{\pmb{x}}_1, \vec{\pmb{x}}_2) \in L^2$$
: if $\|\vec{\pmb{x}}_1 - \vec{\pmb{x}}_2\| \leqslant \gamma R$: add $\vec{\pmb{x}}_1 - \vec{\pmb{x}}_2$ to L_{out}

2-sieve [NV08]

for
$$(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2) \in L^2$$
:
if $\|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\| \leqslant \gamma R$:
add $\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2$ to L_{out}

3-sieve

for
$$(\vec{x}_1, \vec{x}_2, \vec{x}_3) \in L^3$$
:
if $||\vec{x}_1 + \vec{x}_2 + \vec{x}_3|| \le \gamma R$:
add $\vec{x}_1 + \vec{x}_2 + \vec{x}_3$ to L_{out}

2-sieve [NV08]

$$\begin{array}{l} \text{for } (\vec{\pmb{x}}_1,\vec{\pmb{x}}_2) \in \mathit{L}^2: \\ \text{if } \|\vec{\pmb{x}}_1-\vec{\pmb{x}}_2\| \leqslant \gamma R: \\ \text{add } \vec{\pmb{x}}_1-\vec{\pmb{x}}_2 \text{ to } \mathit{L_{out}} \end{array}$$

3-sieve

for
$$(\vec{x}_1, \vec{x}_2, \vec{x}_3) \in L^3$$
:
if $||\vec{x}_1 + \vec{x}_2 + \vec{x}_3|| \le \gamma R$:
add $\vec{x}_1 + \vec{x}_2 + \vec{x}_3$ to L_{out}

k-sieve

for
$$(\vec{\mathbf{x}}_1,...,\vec{\mathbf{x}}_k) \in L^k$$
:
if $\|\vec{\mathbf{x}}_1 + ... + \vec{\mathbf{x}}_k\| \leqslant \gamma R$:
add $\vec{\mathbf{x}}_1 + ... + \vec{\mathbf{x}}_k$ to L_{out}

Minimal memory N

Lattice sieving

3.0 2.5 log2(N^k) 1.5 1.0 0.5 75 25 50 100 125 150 175 200

Minimal memory N

Naive time N^k

Filtering strategy for the 2-sieve

New filtering tailored for the *k*-sieve

New filtering tailored for the *k*-sieve

$$F_1 + F_2 + F_3 = \vec{0}$$

Step 1 - Partitioning the sphere

For each $\vec{x} \in L$:

Add \vec{x} to its nearest filter's bucket

Step 2 - Triplets finding

For each tuple-filter FFF:

Find all reducing $(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2, \vec{\mathbf{x}}_3)$ in $\vec{\mathbf{b}} \times \vec{\mathbf{b}} \times \vec{\mathbf{b}}$

Repeat

Repeat steps 1 and 2 until all *N* reduced points are found.

Classical k-sieves

0.34 0.32 Time exponent t 0.30 2-sieve [CL23] 3-sieve [Kir+19] (Alg. 4.1) 3-sieve [Kir+19] + LSF (Appendix B) 0.28 3-sieve [this work] 4-sieve [Kir+19] (Alg. 4.1) 4-sieve [Kir+19] + LSF (Appendix B) 0.26 4-sieve [this work] 0.175 0.180 0.185 0.190 0.195 0.200 0.205 Memory exponent m

Classical k-sieves

Quantum k-sieves

Takeaway

Conclusion

- New filtering technique: k-RPC
- New trade-offs, improved in some regimes
- Also go below the conditional lower bound⁶
- Straightforward improvements: add pairwise filtering , quantum walks...

⁶[KL21] Kirshanova-Laarhoven. Lower bounds on lattice sieving and information set decoding.

Outline

- Lattice sieving
 - Shortest Vector Problem (SVP)
 - Sieving algorithms
 - Filtering
- Sieving via quantum walks
 - New framework
 - Quantum walk
 - Complexity results
- 3 k-sieves with lower memory
- Wave quantum security

Syndrome Decoding problem

Public: matrix H and vector s with elements in $\{0, 1\}$, weight $w \in [0, n]$

Secret: $e \in \{0, 1\}^n$ such that:

Syndrome Decoding problem

Public: matrix H and vector s with elements in $\{0, 1\}$, weight $w \in [0, n]$

Secret: $e \in \{0, 1\}^n$ such that:

- H structured matrix (U, U + V)
- digital signature: Ternary : {0,1,2} instead of {0,1}
 - Large weight w

o digital sign

Attacks on Wave

Key attack: Distinguish the secret key of from the uniform random

ightharpoonup Find $\mathbf{e}=(\mathbf{u},\mathbf{u})$ solution to the Syndrome Decoding problem.

Attacks on Wave

Key attack: Distinguish the secret key **✓** from the uniform random

ightharpoonup Find $\mathbf{e} = (\mathbf{u}, \mathbf{u})$ solution to the Syndrome Decoding problem.

Forgery attack: Produce a fake signed document passing the authenticity test

ightharpoonup Find couple **s** and **e** = (**u**, **u**) solution to the Syndrome Decoding problem.

Attacks on Wave

Key attack: Distinguish the secret key **✓** from the uniform random

ightharpoonup Find $\mathbf{e} = (\mathbf{u}, \mathbf{u})$ solution to the Syndrome Decoding problem.

Forgery attack: Produce a fake signed document passing the authenticity test

ightharpoonup Find couple **s** and **e** = (**u**, **u**) solution to the Syndrome Decoding problem.

Wave security

 λ bits of security: known attacks run in time $\geq 2^{\lambda}$.

	Cla	assical	Quantum		
NIST settings	Key attack	Forgery attack	Key attack	Forgery attack	
(I)	138	129	80	78	
(III)	206	194	120	117	
(V)	274	258	160	156	

Takeaway

Conclusion

- First quantum key attack against Wave
- Improvement of the quantum forgery attack
- NIST submission

Ongoing and future works

- Code sieving via quantum walks
 Collision finding and two filtering layers for code sieving [DEEK23]
- Optimal quantum algorithm for multiple collisions Extend [BCSS23] to all parameter ranges.
- 2^k-sieve with combined filtering techniques
 Trade-off from best memory to best time.

Thank you for your attention!

