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Introduction

@ June 2024: NIST standardizes Dilithium
Its security relies on the SIS™ problem

Short Integer Solution in infinity norm (SIS}, . 5)

Let be n,m,q € N and 8 > 0. Given a uniformly random matrix A € Z7*™
find a non-zero vector x € Z™ such that

o Ax = 0 mod ¢ (Parity-check matrix)
° |[x[loc <5
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Introduction

@ June 2024: NIST standardizes Dilithium
Its security relies on the SIS™ problem

Short Integer Solution in infinity norm (SIS:° )

n7m7q76

Let be n,m,q € N and 8 > 0. Given a uniformly random matrix A € Z3*™,
find a non-zero vector x € Z™ such that

o Ax = 0 mod ¢ (Parity-check matrix)

° [x|lec <8
_no solution hard (?7) ‘ trivial 3
0 dmin(A) 4q
(rq'™m)

Ducas,

Engelberts, Loyer Wagner in subexp. time for SIS®® 2 /28



Introduction: Lattices

Lattice-based cryptography
Lattice

Given a basis B := (by,...,by) € R¥* the lattice associated to B is the set
of all integer linear combinations of the basis vectors by, i.e.,

L(B) := {Zle Zbiz € Z} C R

L is said ‘full-rank’ if d = k.
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Introduction: Lattices

SIS, .45 Matrix A

Given A € Zy*™, find a non-zero vector x € Z™ such that
@ Ax =0 mod g
° [x[loc <8
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Introduction: Lattices

SIS, .45 Matrix A

Given A € Zy*™, find a non-zero vector x € Z™ such that
@ Ax =0 mod g
° [x[loc <8

B-SVP in the lattice A (A)

Given A € Zy*™, find a non-zero vector x € Z™ such that
o xeA;(A):={xe€Z™: Ax=0mod ¢}
° [x[loc <8
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Introduction: Lattices

SIS, .45 Matrix A

Given A € Zy*™, find a non-zero vector x € Z™ such that
@ Ax =0 mod g
° [x[loc <8

B-SVP in the lattice A (A)

Given A € Zy*™, find a non-zero vector x € Z™ such that
o xeA;(A):={xe€Z™: Ax=0mod ¢}
° [Ix[lo <8

For simplicity, consider A = [A’[L,,] with A’ € Zj*(™~™

0 Imfn

The basis B := (qIn _A’

) generates L(B) = BZ™ = A; (A).
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Motivation of this work

BKW = Wagner + Dual distinguishing
(LWE) (SIS)
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Motivation of this work

BKW = Wagner + Dual distinguishing
(LWE) (SIS)

Motivation
o Algorithms to solve LWE are variants of [BKWO03]
o |[KF15] claimed to solve LWE with ternary secret in subexponential time

o [HKM18] found an issue in their proof for certain regimes (m = 0(n))
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Motivation of this work

BKW = Wagner + Dual distinguishing
(LWE) (SIS)
Motivation
o Algorithms to solve LWE are variants of [BKWO03]

o |[KF15] claimed to solve LWE with ternary secret in subexponential time

o [HKM18] found an issue in their proof for certain regimes (m = 0(n))

Questions

o Is there a provable variant of Wagner to solve SIS®™ in
subexponential time?

e Can we fix [KF15] for LWE?
@ Does it threaten Dilithium?
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Motivation of this work

BKW = Wagner + Dual distinguishing
(LWE) (SIS)
Motivation
o Algorithms to solve LWE are variants of [BKWO03]

o |[KF15] claimed to solve LWE with ternary secret in subexponential time

o [HKM18] found an issue in their proof for certain regimes (m = 0(n))

Questions

o Is there a provable variant of Wagner to solve SIS®™ in Yes for
subexponential time? B = m

e Can we fix [KF15] for LWE? Maybe?

@ Does it threaten Dilithium? No
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Outline

@ Wagner-style algorithms to solve SIS™

© A provable algorithm for SIS™

© Implications for cryptographic problems
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© Implications for cryptographic problems



VA
m—n n
A/ 1, *|-A’z| =0 mod q
Problem input A Solutions
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VA
m—-n n
high norm
A I, *-A’z] =0 mod q
——
Problem input A Solutions

Wagner’s algorithm [Wag02]

Input: list L
Output: elements in L that sum up to 0
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Wagner’s algorithm for SIS
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Wagner’s algorithm for SIS

n n
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Wagner step in [BKWO03]
Input: A =[A"|L,] € Z3*™
Output: List of vectors x € Z" such that Ax =0 mod ¢ and [|x[[oc <2" <

Divide A into submatrices A; = [A/|T]
Initialize a list Ly with vectors from ¢/({—1,0,1}™ ™)

fori=1,...,r do
L; := Lift AndCombine(L;_1, A;) >Vx € L, A;x =0 mod ¢
return L,
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Wagner’s algorithm for SIS

Lift AndCombine

In: List L;_1 of vectors x € Z4 V™" st. A;_1x = 0 mod ¢ and [|x[os < 201
Out: List L; of vectors x € Zfln/T such that A;x = 0 mod ¢ and [|x[|» < 2°

L, 13| x



Wagner’s algorithm for SIS

Lift AndCombine

In: List L;_1 of vectors x € Z4 V™" st. A;_1x = 0 mod ¢ and [|x[os < 201
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Wagner’s algorithm for SIS

Lift AndCombine

In: List L;_1 of vectors x € Z4 V™" st. A;_1x = 0 mod ¢ and [|x[os < 201
Out: List L; of vectors x € Zzn/T such that A;x = 0 mod ¢ and [|x[|» < 2°

Lift: Compute y € Zj /" such that
A; (Xj = 0 mod q
Y
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Wagner’s algorithm for SIS

Lift AndCombine

In: List L;_1 of vectors x € Z4 V™" st. A;_1x = 0 mod ¢ and [|x[os < 201
Out: List L; of vectors x € Zfln/T such that A;x = 0 mod ¢ and [|x[|» < 2°

Lift: Compute y € Z'" such that
A; (Xj = 0 mod q
Y

/

L, 13| x

Combine vectors if
y =y mod q

— Add to L;

T
|
"
0

Ducas, Engelberts, Loyer Wagner in subexp. time for SIS®®

10 /28



Wagner’s algorithm for SIS

Wagner step in [BKWO03]
Input: A =[A"|L,] € Z}*™
Output: List of vectors x € Zg" such that Ax =0 mod ¢

Divide A into submatrices A; = [A}|T]
Initialize a list Ly with vectors from #/({—1,0,1}™™)

fori=1,...,r do
L; := Lift AndCombine(L;_1, A;) >Vxe L;, A;x =0 mod ¢
return L,
x
Time complexity: O(r - ¢"/")
y } ezt"
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Lazy-modulus switching

Lift AndCombine with lazy-mod switching [AFFP14]

Input: List L;_; of vectors x such that A, _1x =0 mod ¢ and |x||e < 2¢1
Output: List L; of vectors x such that A;x = 0 mod ¢q and ||x||s < 2°

Combine vectors if
y =y mod ¢
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Lazy-modulus switching

Lift AndCombine with lazy-mod switching [AFFP14]

Input: List L;_; of vectors x such that A, _1x =0 mod ¢ and |x||e < 2¢1
Output: List L; of vectors x such that A;x = 0 mod ¢q and ||x||s < 2°

Combine vectors if

LEy] = [Zy'] mod p

Time complexity: O(r - p™/")
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Bounds on the components of x € Ly (Algorithm [AFFP14])
norm

q/pt

] ] ] ] ]

T
coordinates
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Bounds on the components
norm

2q/pt
q/pt

of x € Ly (Algorithm [AFFP14])

] ] ] ] ]

T
coordinates
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Bounds on the components of x € L; (Algorithm [AFFP14])
norm
2'q/pt S

a/pt —
2’L

] ] ] ] ]

T
coordinates

m-—-n n/r n/r n/r n/r
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Bounds on the components of x € L, (Algorithm [AFFP14])
norm

T

r 9+
2"q/p

27‘

q/pt —_—

] ] ] ] ]

T
coordinates
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Kirchner-Fouque algorithm

Bounds on the components of x € Ly (Algorithm [KF15])
norm

qu
q/prt

Q/pz*

q/p1t

1

] ] ] ] ]

T
coordinates

m-—-n (a)bQ b,
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Kirchner-Fouque algorithm

Bounds on the components of x € L (Algorithm [KF15])

norm

qu
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Q/pz*
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Kirchner-Fouque algorithm

Bounds on the components of x € Ly (Algorithm [KF15])
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Kirchner-Fouque algorithm

Bounds on the components of x € L, (Algorithm [KF15])
norm
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Kirchner-Fouque algorithm

Time complexity: O(r - |L;|)

m-—n b1 b
> —>
bll Al I

At

Parameter selection for target norm g = % for some f > 1:
o Number of iterations r
e Moduli p;
o Block sizes b;

o List size |L;| = pl'

Ducas, Engelberts, Loyer Wagner in subexp. time for SIS®® 15 /28



Kirchner-Fouque algorithm

]
]

Parameter selection for target norm g = % for some f > 1:

o Block sizes b; =

Time complexity: O(r - |L;|)

m—n b1 b2
—>—>
A, 1

Number of iterations r» =log, 5 — 1
Moduli p; = q/2°

In N b
Iy, S0 that N =[L;| = p;

List size |L;| = N such that it ensures

n= 22:1 bi
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Kirchner-Fouque algorithm

Time complexity: O(r - |L;|)

m—n b1 b2
b1 I All I

e

Parameter selection for target norm g = % for some f > 1:

Number of iterations r» =log, 5 — 1
Moduli p; = q/2°

e Block sizes b; = ﬁi;\f so that N = |L;| = pl

List size |L;| = N such that it ensures

n=>y._,b< fer bydr <logy(N) - (Inlng — Inln f)
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Kirchner-Fouque algorithm

Kirchner-Fouque [KF15] (only their Wagner step)

For n,m,qe Nand f > 1, 8 := %, we are given a SIS instance A € Zy*™.
There exists an algorithm that returns a vector x € Zg" such that
o Ax =0 mod ¢
o X < B =4
in time .
r - N = poly(n,log q) - 2!nIn(g)—Inln(f)
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Kirchner-Fouque algorithm

Kirchner-Fouque [KF15] (only their Wagner step)

For n,m,qe Nand f > 1, 8 := %, we are given a SIS instance A € Zy*™.
There exists an algorithm that returns a vector x € Zg" such that

o Ax =0 mod ¢
o lIxlle < 8= 4
in time .
- N = poly(n, log q) - 2InTn(g)—InIn(f)

Is x non-zero?
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X x/
Lift
© Combine
Li13| x x-x’
=07
— Add to L;
y-y'
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Distributions of the lists?

UN({-1,0,1}m"m)



Distributions of the lists?

=roaym > 12
1

e

Lo Ly

UN<{_1’071}m_n) 7é {0}



Distributions of the lists?

=roaym > 12

1 L = L,
Ly / L‘1 / Jz / s / Jr
UuN({-1,0,13m) +#{0} ? 277
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@ Wagner-style algorithms to solve SIS™
© A provable algorithm for SIS™

© Implications for cryptographic problems



SIS matrix A

n,m,q,3
Given A € Zy*™, find a non-zero vector x € Zg" such that
@ Ax =0 mod g
° X[l <8

B-SVP® in the lattice A, (A)

Given A € Zy*™, find a non-zero vector x € Zg* such that
oxeA;(A):={xe€Z™: Ax =0mod ¢}
° [Ix[lc <8
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AL _ m—n+n; . _ _
Ai = Aq (Ai) = {X €7 + : AiX = 0 mod q} = ﬁ(BZ)

0 3 0 Innl.p,,
A; = ,C(B;)7 Wlth B; = 0 ! qIni—l /
a0 A
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A= AF(A) = {x€Z™ "™ Ayx = 0mod ¢} = L(By)

q

0 i m—n;\_. Bz‘fl
A} :=L(B}), with B, :=| 0 I, /
oy, "0 AT
pi 7t
Az

Zm—n — AO Al




ZTTL—TI — A

A= A;‘(Ai) ={xeZ" " : A;jx =0mod ¢} = L(B;)

0 i m—mn\_. Bifl
AL = L(B)), with B} := 0 ql,,_,
3 K3 3 iI "”0777‘A27
p; 0
A A Al
/ Ul / ul / / Ul
0 1 Ao y = Af]‘




AL _ m—n+n; . _ _
Ai = Aq (Ai) = {X €7 + : AiX = 0 mod q} = ﬁ(BZ)

0 1 0 Lia\.p |
AL = L£(B)), with B} := 0 ql., ., A o
%Ibi I (R
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Discrete Gaussian distribution

For any s > 0 and x € R™, the Gaussian function is p,(x) := e=m(lxl2/9)*
ps(L) = Yoxer Ps(X)

Discrete Gaussian distribution

For a full-rank lattice £ and any s > 0, the discrete Gaussian distribution
Dy s is defined by

Pr (X =x] =2
X~D¢g,s
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Discrete Gaussian distribution

Convolution lemma
Let be a lattice L CR™, & > 0 and s > 0.(L). For X1, X2 ~ D q,

X1 — Xy ~3e D[l,\/is'

Smoothing parameter: 7.(£) := inf{s > 0: p;/,(L*\{0}) < €}.

Lower bound on s for D, , to ‘behave like’ a continuous Gaussian distribution.
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Wagner as a Gaussian sampler

Wagner-style algorithm for SIS® [our algorithm)|
Input: A =[A"|L,] € Zy*™

Output: List of vectors x € AJ-(A)

Define sequences of lattices A;, A_’i fori=0,...,r

Set sg such that all the s; := \/51 so satisfy the smoothness conditions
Initialize a list Ly with vectors following Dy, s,

fort=1,...,r do

L; := Lift AndCombine(L;_1, A;) > Vx € Lj,x ~c Dp,
return L,
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Wagner as a Gaussian sampler

Lift AndCombine [our algorithm]|

Input: List L;_; of vectors x ~ Dj, s,
Output: List L; of vectors x ~ Dy, s,

L; (C A)
X
DGLift

/

L, 13| x



Wagner as a Gaussian sampler

Lift AndCombine [our algorithm]|

Input: List L;_; of vectors x ~ Dj, s,

Output: List L; of vectors XN—DAiYSi
(CA)
DGLift

/ Combine 1f = /> mod A;

y y
(belong to the same coset of AL/A;)

L, 13| x

— Add to L;
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@ Wagner-style algorithms to solve SIS™
© A provable algorithm for SIS™

© Implications for cryptographic problems



Implications for SIS

Main theorem: Solving SIS® in provable subexponential time

eneN 0 0<e< m1qQ
o m=mn+w(n/loglogn) € N o f>1such that ¢ > /In(1/e)
@ ¢ = poly(n) prime such that

qlfn/myz( g ] ﬁ = %’\/ Inm
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Implications for SIS

Main theorem: Solving SIS® in provable subexponential time

eneN
o m=mn+w(n/loglogn) € N o f>1such that ¢ > /In(1/e)
@ ¢ = pol prime such that

qlfn/myz( (2 o fB:= %\/lnm

There exists an algorithm that solves SIS;®,, . 5 in expected time

n/2
T = poly(n, In(1/¢)) - 28 ma—n(ln f+5 0l 1)-0) _ 90(551m)

with success probability 1 — 2= SUn),
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Implications for ternary-LWE

Definition: Decision-LWE (Learning With Errors)

Let s~ U (Zg) and y be a probability distribution on Z. Decide whether given
pairs (a,c) € Lq % ZLq are sampled according to

e the uniform distribution on Zg x Z, ; or

o the LWE distribution on Zi x Z,, that samples ¢ = (a,s) + e with e ~ y.
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Implications for ternary-LWE

Definition: Decision-LWE (Learning With Errors)

Let s~ U (Zg) and y be a probability distribution on Z. Decide whether given
pairs (a,c) € Lq % ZLq are sampled according to

e the uniform distribution on Zg x Z, ; or

o the LWE distribution on Zi x Z,, that samples ¢ = (a,s) + e with e ~ y.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS.
It forces to take e = e~4(")
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Implications for ternary-LWE

Definition: Decision-LWE (Learning With Errors)
Let s~ U (Zg) and y be a probability distribution on Z. Decide whether given
pairs (a,c) € Lq % ZLq are sampled according to

e the uniform distribution on Zg x Z, ; or

o the LWE distribution on Zi x Z,, that samples ¢ = (a,s) + e with e ~ y.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS.
It forces to take ¢ = e~(") .. that makes the runtime for ¢ = poly(n)

n
T — 9ming—In(ln f+imn)—o() _ 2n/0(1)

Work in progress: Choose a sequence of lattices with smaller smoothing
parameters (than ]%Zbi)
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Implications for Dilithium

In practice, attacks run faster than the proven version.
— Perform a heuristic time estimation
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Implications for Dilithium

In practice, attacks run faster than the proven version.
— Perform a heuristic time estimation

B || logy(Time)

NIST level H n m q
2 (128) 256-4 | 256-9 | 8380417 | 350209 270
3 (192) 256 -6 | 256 -12 | 8380417 | 724481 344
5 (256) 256 -8 | 25616 | 8380417 | 769537 451
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Implications for Dilithium

In practice, attacks run faster than the proven version.
— Perform a heuristic time estimation

B || logy(Time)

NIST level H n m q
2 (128) 256-4 | 256-9 | 8380417 | 350209 270
3 (192) 256 -6 | 256 -12 | 8380417 | 724481 344
5 (256) 256 -8 | 25616 | 8380417 | 769537 451

This attack does not seem to threaten Dilithium

27 /28
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Conclusion

o A provable algorithm for SIS®™ in subexponential time 20 (=)
o Leads for getting a similar result for LWE

o Dilithium is not broken!
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Conclusion

o A provable algorithm for SIS®™ in subexponential time 20 (=)
o Leads for getting a similar result for LWE

o Dilithium is not broken!

Take-away

x Don’t focus too much on coordinates of vectors, roundings, parity-check
matrices...

v Explicit the mathematical structures underlying the problem

Thank you for your attention!
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