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Introduction

June 2024: NIST standardizes Dilithium
Its security relies on the SIS∞ problem

Short Integer Solution in infinity norm (SIS∞
n,m,q,β)

Let be n,m, q ∈ N and β > 0. Given a uniformly random matrix A ∈ Zn×m
q ,

find a non-zero vector x ∈ Zm such that
Ax = 0 mod q (Parity-check matrix)
∥x∥∞ ≤ β

β
0 dmin(A)

(≈ q1−
n
m )

q
no solution hard (?) trivial
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Introduction: Lattices

Lattice-based cryptography

Lattice
Given a basis B := (b1, . . . ,bk) ∈ Rd×k, the lattice associated to B is the set
of all integer linear combinations of the basis vectors bi, i.e.,

L(B) :=
{∑k

i=1 zibi : zi ∈ Z
}
⊆ Rd.

L is said ‘full-rank’ if d = k.
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Introduction: Lattices

SIS∞
n,m,q,β matrix A

Given A ∈ Zn×m
q , find a non-zero vector x ∈ Zm such that

Ax = 0 mod q

∥x∥∞ ≤ β

⇐⇒

β-SVP∞ in the lattice Λ⊥
q (A)

Given A ∈ Zn×m
q , find a non-zero vector x ∈ Zm such that

x ∈ Λ⊥
q (A) := {x ∈ Zm : Ax = 0 mod q}

∥x∥∞ ≤ β

For simplicity, consider A = [A′|In] with A′ ∈ Zn×(m−n)
q

The basis B :=

(
0 Im−n

qIn −A′

)
generates L(B) = BZm = Λ⊥

q (A).
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Motivation of this work

BKW = Wagner + Dual distinguishing
(LWE) (SIS)

Motivation
Algorithms to solve LWE are variants of [BKW03]
[KF15] claimed to solve LWE with ternary secret in subexponential time
[HKM18] found an issue in their proof for certain regimes (m = Θ(n))

Questions

Is there a provable variant of Wagner to solve SIS∞ in
subexponential time?
Can we fix [KF15] for LWE?
Does it threaten Dilithium?

Yes for
β = q

polylog(n)

Maybe?
No
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Outline

1 Wagner-style algorithms to solve SIS∞

2 A provable algorithm for SIS∞

3 Implications for cryptographic problems
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A′ In • -A′z

z

= 0 mod q

︸ ︷︷ ︸
Problem input A

︸ ︷︷ ︸
Solutions

m− n n
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A′ In • -A′z

z

= 0 mod q

︸ ︷︷ ︸
Problem input A

︸ ︷︷ ︸
Solutions

m− n n

z

-A′z

short

high norm

Wagner’s algorithm [Wag02]
Input: list L
Output: elements in L that sum up to 0

Ducas, Engelberts, Loyer Wagner in subexp. time for SIS∞ 8 / 28



A′ In • -A′z

z

= 0 mod q

︸ ︷︷ ︸
Problem input A

︸ ︷︷ ︸
Solutions

m− n n

z

-A′z

short

high norm

Wagner’s algorithm [Wag02]
Input: list L
Output: elements in L that sum up to 0

Ducas, Engelberts, Loyer Wagner in subexp. time for SIS∞ 8 / 28



Wagner’s algorithm for SIS

m− n

n
r

n
r

A′
1

In/r

n
r

n
r

A′
2

I2n/r

...

· · ·

InA′

Wagner step in [BKW03]
Input: A = [A′ | In] ∈ Zn×m

q

Output: List of vectors x ∈ Zm
q such that Ax = 0 mod q and ∥x∥∞ ≤ 2r ≤ β

Divide A into submatrices Ai = [A′
i|I]

Initialize a list L0 with vectors from U({−1, 0, 1}m−n)
for i = 1, . . . , r do

Li := LiftAndCombine(Li−1,Ai) ▷ ∀x ∈ Li,Aix = 0 mod q
return Lr
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Wagner’s algorithm for SIS

LiftAndCombine
In: List Li−1 of vectors x ∈ Z(i−1)n/r

q s.t. Ai−1x = 0 mod q and ∥x∥∞ ≤ 2i−1

Out: List Li of vectors x ∈ Zin/r
q such that Aix = 0 mod q and ∥x∥∞ ≤ 2i

xLi−1 ∋

Lift: Compute y ∈ Zn/r
q such that

Ai

(
x
y

)
= 0 mod q

x

y

· · ·
x′

y y′

⊖ Combine vectors if
y ≡ y′ mod q

x
−
x
′

0

−→ Add to Li
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Wagner’s algorithm for SIS

Wagner step in [BKW03]
Input: A = [A′ | In] ∈ Zn×m

q

Output: List of vectors x ∈ Zm
q such that Ax = 0 mod q

Divide A into submatrices Ai = [A′
i|I]

Initialize a list L0 with vectors from U({−1, 0, 1}m−n)
for i = 1, . . . , r do

Li := LiftAndCombine(Li−1,Ai) ▷ ∀x ∈ Li,Aix = 0 mod q
return Lr

x

y

}
∈ Zn/r

q

Time complexity: O(r · qn/r)
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Lazy-modulus switching

LiftAndCombine with lazy-mod switching [AFFP14]
Input: List Li−1 of vectors x such that Ai−1x = 0 mod q and ∥x∥∞ ≤ 2i−1

Output: List Li of vectors x such that Aix = 0 mod q and ∥x∥∞ ≤ 2i

xLi−1 ∋

Lift

x

y

.

x′

y y′

⊖ Combine vectors if
y ≡ y′ mod q

x
−
x
′

0

Time complexity: O(r · pn/r)
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Lazy-modulus switching

LiftAndCombine with lazy-mod switching [AFFP14]
Input: List Li−1 of vectors x such that Ai−1x = 0 mod q and ∥x∥∞ ≤ 2i−1

Output: List Li of vectors x such that Aix = 0 mod q and ∥x∥∞ ≤ 2i

xLi−1 ∋

Lift

x

y

x′

y y′

⊖ Combine vectors if
.⌊p

qy⌉ ≡ ⌊p
qy

′⌉ mod p
x
−
x
′

y-y′

 ≤ 2i

}
≤ q

p

Time complexity: O(r · pn/r)
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Bounds on the components of x ∈ L0 (Algorithm [AFFP14])
norm

coordinates
m− n n/r n/r n/r n/r

q/p

q

1
.
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Bounds on the components of x ∈ L1 (Algorithm [AFFP14])
norm

coordinates
m− n n/r n/r n/r n/r

q/p

q

2

.
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Bounds on the components of x ∈ L2 (Algorithm [AFFP14])
norm

coordinates
m− n n/r n/r n/r n/r

q/p

2q/p

q

4

.
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Bounds on the components of x ∈ Li (Algorithm [AFFP14])
norm

coordinates
m− n n/r n/r n/r n/r

q/p

...

2iq/p

2i

q

.
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Bounds on the components of x ∈ Lr (Algorithm [AFFP14])
norm

coordinates
m− n n/r n/r n/r n/r

q/p

q
2rq/p

2r

.
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Kirchner-Fouque algorithm

Bounds on the components of x ∈ L0 (Algorithm [KF15])
norm

coordinates
m− n b1 b2 · · · br

q/p1

q/p2

...

q/pr

q

1
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Kirchner-Fouque algorithm

Bounds on the components of x ∈ L1 (Algorithm [KF15])
norm

coordinates
m− n b1 b2 · · · br

q/p1

q/p2

...

q/pr

q
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Kirchner-Fouque algorithm

Bounds on the components of x ∈ L2 (Algorithm [KF15])
norm

coordinates
m− n b1 b2 · · · br

q/p1

q/p2

...

q/pr

q
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Kirchner-Fouque algorithm

Bounds on the components of x ∈ Lr (Algorithm [KF15])
norm

coordinates
m− n b1 b2 · · · br

q/p1

q/p2

...

q/pr

q
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Kirchner-Fouque algorithm

Time complexity: O(r · |Li|)

m− n

b1

b1

A′
1 I

b2
n

b2

A′
2

I

IA′

Parameter selection for target norm β = q
f for some f > 1:

Number of iterations r

Moduli pi
Block sizes bi

List size |Li| = pbii

n =
∑r

i=1 bi ≤
∫ r+1

1
bxdx ≤ log2(N) · (ln ln q − ln ln f)
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Kirchner-Fouque algorithm

Kirchner-Fouque [KF15] (only their Wagner step)
For n,m, q ∈ N and f > 1, β := q

f , we are given a SIS instance A ∈ Zn×m
q .

There exists an algorithm that returns a vector x ∈ Zm
q such that

Ax = 0 mod q

∥x∥∞ ≤ β = q
f

in time
r ·N = poly(n, log q) · 2

n
ln ln(q)−ln ln(f)

Is x non-zero?
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xLi−1 ∋

Lift

x

y

x′

y y′

⊖ Combine

x-x′

y-y′
−→ Add to Li

L′
i

= 0?
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Distributions of the lists?

L0 L1

L′
1

UN ({−1, 0, 1}m−n)

|{−1, 0, 1}m−n| ≫ |Zb1
q |

̸= {0}

L2 · · · Lr

? ???

L′
2 · · · L′

r
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SIS∞
n,m,q,β matrix A

Given A ∈ Zn×m
q , find a non-zero vector x ∈ Zm

q such that
Ax = 0 mod q

∥x∥∞ ≤ β

⇐⇒

β-SVP∞ in the lattice Λ⊥
q (A)

Given A ∈ Zn×m
q , find a non-zero vector x ∈ Zm

q such that

x ∈ Λ⊥
q (A) := {x ∈ Zm : Ax = 0 mod q}

∥x∥∞ ≤ β
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Λi := Λ⊥
q (Ai) = {x ∈ Zm−n+ni : Aix = 0 mod q} = L(Bi)

Λ′
i := L(B′

i), with B′
i :=

 0 0 Im−n

0 qIni−1
q
pi
Ibi 0


-A′

i

=: Bi−1

Zm−n = Λ0 Λ1 Λ2 · · · Λr = Λ⊥
q (A)

Λ′
1 Λ′

2 · · · Λ′
r

⊆ ⊆ ⊆
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Discrete Gaussian distribution
For any s > 0 and x ∈ Rn, the Gaussian function is ρs(x) := e−π(∥x∥2/s)

2

.

ρs(L) :=
∑

x∈L ρs(x)

Discrete Gaussian distribution
For a full-rank lattice L and any s > 0, the discrete Gaussian distribution
DL,s is defined by

Pr
X∼DL,s

[X = x] =
ρs(x)

ρs(L)
.
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Discrete Gaussian distribution

Convolution lemma
Let be a lattice L ⊆ Rn, ε > 0 and s ≥ ηε(L). For X1, X2 ∼ DL,s,

X1 −X2 ∼3ε DL,
√
2s.

Smoothing parameter: ηε(L) := inf{s > 0 : ρ1/s(L∗\{0}) ≤ ε}.

Lower bound on s for DL,s to ‘behave like’ a continuous Gaussian distribution.
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Wagner as a Gaussian sampler

Wagner-style algorithm for SIS∞ [our algorithm]
Input: A = [A′ | In] ∈ Zn×m

q

Output: List of vectors x ∈ Λ⊥
q (A)

Define sequences of lattices Λi,Λ
′
i for i = 0, . . . , r

Set s0 such that all the si :=
√
2
i
s0 satisfy the smoothness conditions

Initialize a list L0 with vectors following DΛ0,s0

for i = 1, . . . , r do
Li := LiftAndCombine(Li−1,Λi) ▷ ∀x ∈ Li,x ∼ε DΛi,si

return Lr
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Wagner as a Gaussian sampler

LiftAndCombine [our algorithm]
Input: List Li−1 of vectors x ∼ DΛi−1,si−1

Output: List Li of vectors x ∼ DΛi,si

xLi−1 ∋

DGLift

x

y

· · ·

L′
i (⊆ Λ′

i)

x′

y y′

⊖
Combine if

(
x
y

)
≡

(
x′

y′

)
mod Λi

(belong to the same coset of Λ′
i/Λi)

x
−
x
′

y-y′

−→ Add to Li
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Implications for SIS

Main theorem: Solving SIS∞ in provable subexponential time

n ∈ N
m = n+ ω(n/ log log n) ∈ N
q = poly(n) prime such that
q1−n/m ≥ 6

0 ≤ ε ≤ 1
mq2

f > 1 such that q
f ≥

√
ln(1/ε)

β := q
f

√
lnm

There exists an algorithm that solves SIS∞n,m,q,β in expected time

T = poly(n, ln(1/ε)) · 2
n/2

ln ln q−ln(ln f+ 1
2 ln ln 1

ε )−O(1) = 2O(
n

ln lnn )

with success probability 1− 2−Ω̃(n).
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Implications for ternary-LWE

Definition: Decision-LWE (Learning With Errors)
Let s ∼ U(Zn

q ) and χ be a probability distribution on Z. Decide whether given
pairs (a, c) ∈ Zn

q × Zq are sampled according to
the uniform distribution on Zn

q × Zq ; or
the LWE distribution on Zn

q × Zq, that samples c = ⟨a, s⟩+ e with e ∼ χ.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS.
It forces to take ε = e−Ω̃(n)... that makes the runtime for q = poly(n)

T = 2
n

ln ln q−ln(ln f+1
2

ln n)−O(1) = 2n/O(1)

Work in progress: Choose a sequence of lattices with smaller smoothing
parameters (than q

pi
Zbi)

Ducas, Engelberts, Loyer Wagner in subexp. time for SIS∞ 26 / 28



Implications for ternary-LWE

Definition: Decision-LWE (Learning With Errors)
Let s ∼ U(Zn

q ) and χ be a probability distribution on Z. Decide whether given
pairs (a, c) ∈ Zn

q × Zq are sampled according to
the uniform distribution on Zn

q × Zq ; or
the LWE distribution on Zn

q × Zq, that samples c = ⟨a, s⟩+ e with e ∼ χ.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS.
It forces to take ε = e−Ω̃(n)...

that makes the runtime for q = poly(n)

T = 2
n

ln ln q−ln(ln f+1
2

ln n)−O(1) = 2n/O(1)

Work in progress: Choose a sequence of lattices with smaller smoothing
parameters (than q

pi
Zbi)

Ducas, Engelberts, Loyer Wagner in subexp. time for SIS∞ 26 / 28



Implications for ternary-LWE

Definition: Decision-LWE (Learning With Errors)
Let s ∼ U(Zn

q ) and χ be a probability distribution on Z. Decide whether given
pairs (a, c) ∈ Zn

q × Zq are sampled according to
the uniform distribution on Zn

q × Zq ; or
the LWE distribution on Zn

q × Zq, that samples c = ⟨a, s⟩+ e with e ∼ χ.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS.
It forces to take ε = e−Ω̃(n)... that makes the runtime for q = poly(n)

T = 2
n

ln ln q−ln(ln f+1
2

ln n)−O(1) = 2n/O(1)

Work in progress: Choose a sequence of lattices with smaller smoothing
parameters (than q

pi
Zbi)

Ducas, Engelberts, Loyer Wagner in subexp. time for SIS∞ 26 / 28



Implications for Dilithium

In practice, attacks run faster than the proven version.
→ Perform a heuristic time estimation

NIST level n m q β log2(Time)
2 (128) 256 · 4 256 · 9 8380417 350209 270
3 (192) 256 · 6 256 · 12 8380417 724481 344
5 (256) 256 · 8 256 · 16 8380417 769537 451

This attack does not seem to threaten Dilithium
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Conclusion

A provable algorithm for SIS∞ in subexponential time 2O(
n

ln lnn )

Leads for getting a similar result for LWE
Dilithium is not broken!

Take-away
× Don’t focus too much on coordinates of vectors, roundings, parity-check

matrices...
✓ Explicit the mathematical structures underlying the problem

Thank you for your attention!
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