
Lattice sieving via quantum random walks

Johanna Loyer
Joint work with André Chailloux

Overview

1. Preliminaries
Lattices
Locality sensitive filtering (LSF)
Quantum Computing

2. Our algorithm

3. Complexity and space/time trade-offs

1/26

Lattice and SVP

Lattice

The d-dimensional lattice L ⊂ Rm generated by the basis B = (b⃗1, ..., b⃗d) with ∀i , b⃗i ∈ Rm is

the set of all integer linear combinations of its basis vectors: L(B) =
{∑d

i=1 λi b⃗i , λi ∈ Z
}
.

Shortest Vector Problem (SVP)

Given a lattice L, find the shortest non-zero vector v⃗ ∈ L, ie. st. ∥v⃗∥ = inf
{
||u⃗|| ≠ 0, u⃗ ∈ L

}
.

2/26

Why do we want to solve SVP?

Cryptography

• NP-hard problem, hard in average.

• Problems derived from SVP: SIS, LWE, NTRU...

• Quantum-resistant cryptosystems based on them: Dilithium, FALCON, NTRU, Kyber,
SABER.

Cryptanalysis

• Broken if a reduced basis of the lattice can be found.

• BKZ algorithm finds a reduced basis.

• Solving SVP = subroutine of BKZ

⇒ The security of these cryptosystems directly relies on the complexity of solving SVP.

3/26

Why do we want to solve SVP?

Cryptography

• NP-hard problem, hard in average.

• Problems derived from SVP: SIS, LWE, NTRU...

• Quantum-resistant cryptosystems based on them: Dilithium, FALCON, NTRU, Kyber,
SABER.

Cryptanalysis

• Broken if a reduced basis of the lattice can be found.

• BKZ algorithm finds a reduced basis.

• Solving SVP = subroutine of BKZ

⇒ The security of these cryptosystems directly relies on the complexity of solving SVP.

3/26

Sieving

SVP-solving methods

• Main practical methods: enumeration and sieving.

• Run in exponential time.

Main heuristic: Lattice vectors acts as random vectors.

• Implies that vectors of norm at most R are lying on the border of R · Sd ,
with R · Sd := {x⃗ ∈ Rd : ∥x⃗∥ ⩽ R}.
• Validated by experiments.

4/26

Sieving

Nguyen-Vidick Sieve (NV-sieve) [NV08]

Input: list L of N lattice vectors of norm at most R ; γ < 1.
Output: list L′ of N lattice vectors of norm at most γR < R.
for (v⃗ , w⃗) ∈ L :

if ∥v⃗ − w⃗∥ ⩽ γR : add v⃗ − w⃗ to L′

Sphere of dimension d and
radius R.

v⃗
w⃗

v⃗ − w⃗

0

•

•
•

•

If v⃗ , w⃗ ∈ L then v⃗ − w⃗ ∈ L.

For γ → 1 and v⃗ , w⃗ ∈ R · Sd ,
∥v⃗ − w⃗∥ ⩽ γR ⇔ θ(v⃗ , w⃗) ⩽ π

3 .

5/26

Sieving

Nguyen-Vidick Sieve (NV-sieve) [NV08]

Input: list L of N lattice vectors of norm at most R ; γ < 1.
Output: list L′ of N lattice vectors of norm at most γR < R.
for (v⃗ , w⃗) ∈ L :

if ∥v⃗ − w⃗∥ ⩽ γR : add v⃗ − w⃗ to L′

Sphere of dimension d and
radius R.

v⃗
w⃗

v⃗ − w⃗

0

•

•
•

•

If v⃗ , w⃗ ∈ L then v⃗ − w⃗ ∈ L.

For γ → 1 and v⃗ , w⃗ ∈ R · Sd ,
∥v⃗ − w⃗∥ ⩽ γR ⇔ θ(v⃗ , w⃗) ⩽ π

3 .

5/26

Sieving - Solving SVP

Solve SVP by sieving

Input: a lattice L of basis (b⃗1, ..., b⃗d)
Output: a shortest vector of L (probably)
L← generate N = (4/3)d/2+o(d) lattice vectors ▷ by Klein’s algorithm
while L does not contain a short vector :

L← NV-sieve step(L, γ → 1)
return min(L)

1st iteration: norm γR
2nd iteration: γ2R
...
poly(d)-th iteration: γpoly(d)R

Complexity: N2 = 20.415d+o(d) time and N = 20.208d+o(d) space.

6/26

LSF (Locality Sensitive Filtering)

Improvement of the NV-sieve: only check pairs of close vectors.

Filter

A filter fs⃗,α of center s⃗ ∈ Rd and angle α ∈ [0, π/2] maps a vector v⃗ to a boolean value:

• 1 if θ(v⃗ , s⃗) ⩽ α,

• 0 else.

s⃗
•v⃗ •

w⃗•

0

α

7/26

LSF (Locality Sensitive Filtering)

NV-sieve with LSF

1. Generate filters all over the sphere. ▷ centers = words from a code

2. Add each vector to its nearest filters of angle at most α. ▷ list decoding algorithm

3. For each vector : search a reducing one within its filters (instead of in the whole list).
• Classically or by Grover’s search

Complexity (20.208d+o(d) space):
Original NV-sieve [NV08]: 20.415d+o(d) time.
Classic with LSF [BDGL16]: 20.292d+o(d) time.
Quantum with LSF [Laa16]: 20.265d+o(d) time.

8/26

Quantum Computing

Grover’s algorithm

Input: x1, ..., xn ∈ Ed and a function f : Ed → {0, 1}.
Output: i ∈ [|1, n|] such that f (xi) = 1.

Time complexity: O(
√
n).

9/26

Quantum Computing

Quantum Random Walk

Input: a graph G = (V ,E),
a function f : V → {0, 1} with f (v) = 1⇔ v is a ”marked” vertex.

Output: a marked vertex v ∈ V .

(Will be illustrated further with an example.)

10/26

Our algorithm

NV-sieve using quantum random walks

Input: list L of N lattice vectors of norm at most R ; γ < 1.
Output: list L′ of N lattice vectors of norm at most γR < R.

Main idea: Replace Grover’s search by a quantum random walk.

11/26

Step 1

Sample a code C and generate the α-filters.
Insert each list vector in its (unique) nearest α-filter. ▷ Ncα vectors per α-filter. cα ∈ [0, 1]

12/26

Step 1

Sample a code C and generate the α-filters.
Insert each list vector in its (unique) nearest α-filter. ▷ Ncα vectors per α-filter. cα ∈ [0, 1]

13/26

Step 1

Sample a code C and generate the α-filters.
Insert each list vector in its (unique) nearest α-filter. ▷ Ncα vectors per α-filter. cα ∈ [0, 1]

14/26

Step 1

Sample a code C and generate the α-filters.
Insert each list vector in its (unique) nearest α-filter. ▷ Ncα vectors per α-filter. cα ∈ [0, 1]

For v⃗ , w⃗ ∈ Sd and their residual
vectors v⃗R , w⃗R ∈ Sd−1,

θ(v⃗ , w⃗) ⩽
π

3
⇔ θ(v⃗R , w⃗R) ⩽ θ∗α.

14/26

Step 2

For each α-filter :

1. Vertex : Choose randomly NcV vectors from the α-filter.

2. Sample a code C ′ and generate the β-filters.
Insert each Vertex’s vector in its nearest β-filter.

3. Perform Quantum Random Walks to find all the reducing pairs in the α-filter.

15/26

Quantum Random Walk

Quantum Random Walk

Input: a graph G = J(Ncα ,NcV),
a vertex is marked iff. contains a pair of angle at most θ∗α.

Output: a marked vertex.

Johnson’s graph J(Ncα ,NcV):
• Vertexes V : set of NcV from the Ncα of the current α-filter.
• Edges E : 2 vertexes are neighbors iff. they differ by exactly 1 vector.

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

ü Zoom on the current vertex

16/26

Classic VS Quantum Random Walk

Classic Random Walk

Randomly choose 1 neighbor vertex.

Quantum Random Walk

Quantum superposition of all the neighbors vertexes.

17/26

Step 1

Sample a code C and generate the α-filters.
Insert each list vector in its (unique) nearest α-filter. ▷ Ncα vectors per α-filter

Step 2

For each α-filter :

1. Vertex : Choose randomly NcV vectors from the α-filter. ▷ NcV vectors in the vertex

2. Sample a code C ′ and generate the β-filters.
Insert each Vertex’s vector in its nearest β-filter.

3. Perform Quantum Random Walks to find all the reducing pairs in the α-filter.

18/26

Step 1

Sample a code C and generate the α-filters.
Insert each list vector in its (unique) nearest α-filter. ▷ Ncα vectors per α-filter

Step 2

For each α-filter :

1. Vertex : Choose randomly NcV vectors from the α-filter. ▷ NcV vectors in the vertex

2. Sample a code C ′ and generate the β-filters.
Insert each Vertex’s vector in its nearest β-filter.

3. Perform Quantum Random Walks to find all the reducing pairs in the α-filter.

Repetitions

Run the steps 1-2 until we get N reduced vectors.

18/26

Complexity

Time complexity of a complete sieve step:

N ·

(
S +

1√
ϵ

(
1√
δ
U + C

))

Parameters:

• cα : Ncα vectors per α-filter of C .

• cV : NcV vectors per vertex in the graph.

19/26

Optimal complexity

Our algorithm with parameters

cα ≈ 0.3696 ; cV ≈ 0.2384

heuristically solves SVP on dimension d

• in time 20.2570d+o(d),

• uses QRAM of maximum size 20.0767d+o(d),

• uses quantum memory of maximum size 20.0495d+o(d)

• and uses classical memory of size 20.2075d+o(d).

20/26

Trade-off – fixed quantum memory

Quantum memory/time trade-off.

21/26

Trade-off – fixed QRAM

QRAM/time trade-off.

22/26

Trade-off – Synthesis

Time 0.2925 0.2827 0.2733 0.2653 0.2621 0.2598 0.2570
QRAM 0 0.02 0.04 0.0578 0.065 0.070 0.0767
Qmem 0 0 0 0 0.0190 0.0324 0.0495

Comment [BDGL16] alg. [Laa16] alg. opt.param

Figure: Time, QRAM and quantum memory values for our algorithm.

23/26

Conclusion

• Time to break a cryptosystem based on SVP: 20.2653d+o(d) → 20.2570d+o(d).

• 128 bits of security → 124.

• Fix with a slight increase of the parameters.

24/26

Thank you for your attention!

25/26

References

P.Q. Nguyen and T. Vidick (2008)

Sieve algorithms for the shortest vector problem are practical

J. Math. Crypt. 2, 181 – 207. https://doi.org/10.1515/JMC.2008.009

A. Becker, L. Ducas, N. Gama and T. Laarhoven (2016)

New directions in nearest neighbor searching with applications to lattice sieving

Proc. of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms.
https://doi.org/10.1137/1.9781611974331.ch2

T. Laarhoven (2016)

(PhD thesis) Search problems in cryptography, From fingerprinting to lattice sieving

Eindhoven University of Technology. https://research.tue.nl/files/14673128/20160216 Laarhoven.pdf

F. Magniez, A. Nayak, J. Roland and M. Santha (2011)

Search via quantum walk

SIAM J. Comput. Vol. 40(1) 142 – 164. https://doi.org/10.1137/090745854

A. Chailloux and J. Loyer (2021)

Lattice sieving via quantum random walks

ASIACRYPT21. https://eprint.iacr.org/2021/570.pdf 26/26

	Preliminaries
	Lattices
	Locality sensitive filtering (LSF)
	Quantum Computing

	Our algorithm
	Complexity and space/time trade-offs
	References

