## Lattice sieving via quantum random walks

### Johanna Loyer

Joint work with André Chailloux



### Overview

- Preliminaries
   Lattices
   Locality sensitive filtering (LSF)
   Quantum Computing
- 2. Our algorithm
- 3. Complexity and space/time trade-offs

### Lattice and SVP

#### Lattice

The *d*-dimensional lattice  $\mathcal{L} \subset \mathbb{R}^m$  generated by the basis  $B = (\vec{b_1}, ..., \vec{b_d})$  with  $\forall i, \vec{b_i} \in \mathbb{R}^m$  is the set of all integer linear combinations of its basis vectors:  $\mathcal{L}(B) = \left\{\sum_{i=1}^d \lambda_i \vec{b_i}, \ \lambda_i \in \mathbb{Z}\right\}$ .

#### Shortest Vector Problem (SVP)

Given a lattice  $\mathcal{L}$ , find the shortest non-zero vector  $\vec{v} \in \mathcal{L}$ , ie. st.  $\|\vec{v}\| = \inf\{||\vec{u}|| \neq 0, \ \vec{u} \in \mathcal{L}\}$ .



## Why do we want to solve SVP?

#### Cryptography

- NP-hard problem, hard in average.
- Problems derived from SVP: SIS, LWE, NTRU...
- Quantum-resistant cryptosystems based on them: Dilithium, FALCON, NTRU, Kyber, SABER.

# Why do we want to solve SVP?

#### Cryptography

- NP-hard problem, hard in average.
- Problems derived from SVP: SIS, LWE, NTRU...
- Quantum-resistant cryptosystems based on them: Dilithium, FALCON, NTRU, Kyber, SABER.

#### Cryptanalysis

- Broken if a reduced basis of the lattice can be found.
- BKZ algorithm finds a reduced basis.
- Solving SVP = subroutine of BKZ
  - $\Rightarrow$  The security of these cryptosystems directly relies on the complexity of solving SVP.

# Sieving

#### SVP-solving methods

- Main practical methods: enumeration and sieving.
- Run in exponential time.

Main heuristic: Lattice vectors acts as random vectors.

- Implies that vectors of norm at most R are lying on the border of  $R \cdot S^d$ , with  $R \cdot S^d := \{\vec{x} \in \mathbb{R}^d : ||\vec{x}|| \leq R\}$ .
- Validated by experiments.

# Sieving

### Nguyen-Vidick Sieve (NV-sieve) [NV08]

**Input**: list L of N lattice vectors of norm at most R ;  $\gamma < 1$ .

**Output**: list L' of N lattice vectors of norm at most  $\gamma R < R$ .

for  $(\vec{v}, \vec{w}) \in L$ :

if  $\|\vec{v} - \vec{w}\| \leqslant \gamma R$ : add  $\vec{v} - \vec{w}$  to L'

Sphere of dimension d and radius R.



# Sieving

### Nguyen-Vidick Sieve (NV-sieve) [NV08]

**Input**: list L of N lattice vectors of norm at most R ;  $\gamma < 1$ .

**Output**: list L' of N lattice vectors of norm at most  $\gamma R < R$ .

for  $(\vec{v}, \vec{w}) \in L$ : if  $||\vec{v} - \vec{w}|| \leq \gamma R$ : add  $\vec{v} - \vec{w}$  to L'

Sphere of dimension d and radius R.



If  $\vec{v}, \vec{w} \in \mathcal{L}$  then  $\vec{v} - \vec{w} \in \mathcal{L}$ .

For  $\gamma \to 1$  and  $\vec{v}, \vec{w} \in R \cdot \mathcal{S}^d$ ,  $\|\vec{v} - \vec{w}\| \leqslant \gamma R \Leftrightarrow \theta(\vec{v}, \vec{w}) \leqslant \frac{\pi}{3}$ .

# Sieving - Solving SVP

### Solve SVP by sieving

```
Input: a lattice \mathcal{L} of basis (\vec{b}_1,...,\vec{b}_d)

Output: a shortest vector of \mathcal{L} (probably)

L \leftarrow \text{generate } N = (4/3)^{d/2 + o(d)} lattice vectors \Rightarrow by Klein's algorithm while L does not contain a short vector : L \leftarrow \text{NV-sieve step}(L,\gamma \rightarrow 1)

return \min(L)
```

```
1st iteration: norm \gamma R
2nd iteration: \gamma^2 R
: poly(d)-th iteration: \gamma^{poly(d)} R
```

**Complexity:**  $N^2 = 2^{0.415d + o(d)}$  time and  $N = 2^{0.208d + o(d)}$  space.

# LSF (Locality Sensitive Filtering)

Improvement of the NV-sieve: only check pairs of close vectors.

#### Filter

A filter  $f_{\vec{s},\alpha}$  of center  $\vec{s} \in \mathbb{R}^d$  and angle  $\alpha \in [0,\pi/2]$  maps a vector  $\vec{v}$  to a boolean value:

- 1 if  $\theta(\vec{v}, \vec{s}) \leqslant \alpha$ ,
- 0 else.



# LSF (Locality Sensitive Filtering)

#### NV-sieve with LSF

- 1. Generate filters all over the sphere.  $\triangleright$  centers = words from a code
- 2. Add each vector to its nearest filters of angle at most  $\alpha$ .  $\triangleright$  list decoding algorithm
- 3. For each vector: search a reducing one within its filters (instead of in the whole list).
  - Classically or by Grover's search

```
Complexity (2^{0.208d+o(d)} \text{ space}):
```

Original NV-sieve [NV08]:  $2^{0.415d+o(d)}$  time.

Classic with LSF [BDGL16]:  $2^{0.292d+o(d)}$  time.

Quantum with LSF [Laa16]:  $2^{0.265d+o(d)}$  time.

# Quantum Computing

### Grover's algorithm

**Input:**  $x_1,...,x_n \in E^d$  and a function  $f: E^d \to \{0,1\}$ .

**Output:**  $i \in [|1, n|]$  such that  $f(x_i) = 1$ .

Time complexity:  $O(\sqrt{n})$ .

# Quantum Computing

#### Quantum Random Walk

**Input:** a graph G = (V, E),

a function  $f: V \to \{0,1\}$  with  $f(v) = 1 \Leftrightarrow v$  is a "marked" vertex.

**Output:** a marked vertex  $v \in V$ .

(Will be illustrated further with an example.)

# Our algorithm

#### NV-sieve using quantum random walks

**Input**: list L of N lattice vectors of norm at most R ;  $\gamma < 1$ .

**Output**: list L' of N lattice vectors of norm at most  $\gamma R < R$ .

Main idea: Replace Grover's search by a quantum random walk.

Sample a code C and generate the  $\alpha$ -filters. Insert each list vector in its (unique) nearest  $\alpha$ -filter.

ilter.  $ho \, {\it N}^{c_{lpha}}$  vectors per lpha-filter.  $c_{lpha} \in [0,1]$ 



Sample a code C and generate the  $\alpha$ -filters.

 $hd N^{c_{lpha}}$  vectors per lpha-filter.  $c_{lpha} \in [0,1]$ Insert each list vector in its (unique) nearest  $\alpha$ -filter.



Sample a code C and generate the  $\alpha$ -filters. Insert each list vector in its (unique) nearest  $\alpha$ -filter.  $\triangleright N^{c_{\alpha}}$  vectors per  $\alpha$ -filter.  $c_{\alpha} \in [0,1]$ 



Sample a code C and generate the  $\alpha$ -filters. Insert each list vector in its (unique) nearest  $\alpha$ -filter.  $\triangleright N^{c_{\alpha}}$  vectors per  $\alpha$ -filter.  $c_{\alpha} \in [0,1]$ 



For  $\vec{v}, \vec{w} \in \mathcal{S}^d$  and their residual vectors  $\vec{v}_R, \vec{w}_R \in \mathcal{S}^{d-1}$ ,

$$heta(ec{v},ec{w})\leqslant rac{\pi}{3} \Leftrightarrow heta(ec{v}_R,ec{w}_R)\leqslant heta_lpha^*.$$

#### For each $\alpha$ -filter :

- 1. Vertex : Choose randomly  $N^{c_V}$  vectors from the  $\alpha$ -filter.
- 2. Sample a code C' and generate the  $\beta$ -filters. Insert each VERTEX's vector in its nearest  $\beta$ -filter.
- 3. Perform Quantum Random Walks to find all the reducing pairs in the  $\alpha$ -filter.

## Quantum Random Walk

#### Quantum Random Walk

**Input:** a graph  $G = J(N^{c_{\alpha}}, N^{c_{V}})$ , a vertex is marked iff. contains a pair of angle at most  $\theta_{\alpha}^{*}$ .

Output: a marked vertex.

Johnson's graph  $J(N^{c_{\alpha}}, N^{c_{V}})$ :

- Vertexes V: set of  $N^{c_V}$  from the  $N^{c_\alpha}$  of the current  $\alpha$ -filter.
- Edges E: 2 vertexes are neighbors iff. they differ by exactly 1 vector.





































































### **Q** Zoom on the current vertex



### Classic VS Quantum Random Walk

#### Classic Random Walk

Randomly choose 1 neighbor vertex.

#### Quantum Random Walk

Quantum superposition of all the neighbors vertexes.

### Step 1

Sample a code C and generate the  $\alpha$ -filters.

Insert each list vector in its (unique) nearest  $\alpha$ -filter.  $\triangleright N^{c_{\alpha}}$  vectors per  $\alpha$ -filter

### Step 2

For each  $\alpha$ -filter :

- 1. Vertex: Choose randomly  $N^{c_V}$  vectors from the  $\alpha$ -filter.  $\triangleright N^{c_V}$  vectors in the vertex
- 2. Sample a code C' and generate the  $\beta$ -filters. Insert each VERTEX's vector in its nearest  $\beta$ -filter.
- 3. Perform Quantum Random Walks to find all the reducing pairs in the  $\alpha$ -filter.

#### Step 1

Sample a code C and generate the  $\alpha$ -filters. Insert each list vector in its (unique) nearest  $\alpha$ -filter.

 $\triangleright N^{c_{\alpha}}$  vectors per  $\alpha$ -filter

### Step 2

For each  $\alpha$ -filter :

- 1. Vertex : Choose randomly  $N^{cv}$  vectors from the  $\alpha$ -filter.  $\triangleright N^{cv}$  vectors in the vertex
- 2. Sample a code C' and generate the  $\beta$ -filters. Insert each VERTEX's vector in its nearest  $\beta$ -filter.
- 3. Perform Quantum Random Walks to find all the reducing pairs in the  $\alpha$ -filter.

#### Repetitions

Run the steps 1-2 until we get N reduced vectors.

# Complexity

**Time complexity** of a complete sieve step:

$$\mathcal{N}\cdot\left(\mathcal{S}+rac{1}{\sqrt{\epsilon}}\left(rac{1}{\sqrt{\delta}}\mathcal{U}+\mathcal{C}
ight)
ight)$$

#### Parameters:

- $c_{\alpha}$ :  $N^{c_{\alpha}}$  vectors per  $\alpha$ -filter of C.
- $c_V$  :  $N^{c_V}$  vectors per vertex in the graph.

## Optimal complexity

Our algorithm with parameters

$$c_{\alpha} \approx 0.3696$$
 ;  $c_{V} \approx 0.2384$ 

heuristically solves SVP on dimension d

- in time  $2^{0.2570d+o(d)}$ ,
- uses QRAM of maximum size 2<sup>0.0767d+o(d)</sup>
- uses quantum memory of maximum size  $2^{0.0495d+o(d)}$
- and uses classical memory of size  $2^{0.2075d+o(d)}$ .

## Trade-off – fixed quantum memory



Quantum memory/time trade-off.

# Trade-off – fixed QRAM



 ${\sf QRAM/time\ trade-off}.$ 

# $\mathsf{Trade}\text{-}\mathsf{off}-\mathsf{Synthesis}$

| Time    | 0.2925        | 0.2827 | 0.2733 | 0.2653       | 0.2621 | 0.2598 | 0.2570    |
|---------|---------------|--------|--------|--------------|--------|--------|-----------|
| QRAM    | 0             | 0.02   | 0.04   | 0.0578       | 0.065  | 0.070  | 0.0767    |
| Qmem    | 0             | 0      | 0      | 0            | 0.0190 | 0.0324 | 0.0495    |
| Comment | [BDGL16] alg. |        |        | [Laa16] alg. |        |        | opt.param |

Figure: Time, QRAM and quantum memory values for our algorithm.

### Conclusion

- Time to break a cryptosystem based on SVP:  $2^{0.2653d+o(d)} o 2^{0.2570d+o(d)}$ .
- 128 bits of security  $\rightarrow$  124.
- Fix with a slight increase of the parameters.

# Thank you for your attention!

### References



P.Q. Nguyen and T. Vidick (2008)

Sieve algorithms for the shortest vector problem are practical J. Math. Crypt. 2, 181 – 207. https://doi.org/10.1515/JMC.2008.009



A. Becker, L. Ducas, N. Gama and T. Laarhoven (2016)

New directions in nearest neighbor searching with applications to lattice sieving Proc. of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms. https://doi.org/10.1137/1.9781611974331.ch2



T. Laarhoven (2016)

(PhD thesis) Search problems in cryptography, From fingerprinting to lattice sieving Eindhoven University of Technology. https://research.tue.nl/files/14673128/20160216\_Laarhoven.pdf



F. Magniez, A. Nayak, J. Roland and M. Santha (2011) Search via quantum walk

SIAM J. Comput. Vol. 40(1) 142 - 164. https://doi.org/10.1137/090745854



A. Chailloux and J. Loyer (2021)

Lattice sieving via quantum random walks